
IBM Spectrum Virtualize scripting

Mikhail Zakharov mikhail.zakharov@cz.ibm.com

Revision history

1.0 2017.11.01 Initial version

1.1 2019.05.02 HTTPS on IBM Spectrum Virtualize updated

Preface

This topic touches some universal ways of accessing IBM Spectrum Virtualize system with scripts. These
methods can be easily applied to reporting, configuration and storage administration tasks. Though most of the
current operating systems and almost any modern programming language have resources to illustrate the subject,
this section concentrates mostly on UNIX/Linux environments with Bourne-again shell (bash) for simple
examples and on Python version 3 for advanced cases.

This section demonstrates basic usage of the following protocols, standards and APIs:

• Secure Shell (SSH)
• SMI-S
• HTTPS and RESTful API on IBM Spectrum Control
• HTTPS on IBM Spectrum Virtualize

Secure Shell (SSH)

Secure Shell (SSH) is a network protocol for secure operations on remote services over insecure network.

IBM Spectrum Virtualize has powerful command-line interface (CLI) which is accessible via SSH protocol.
Together with SSH, Spectrum Virtualize CLI can be used for interactive system configuration, storage
administration and reporting as well as for automating these tasks with scripts.

Attention: SSH protocol allows to authenticate users by passwords or by asymmetric cryptography methods –
SSH-keys. It is strongly advised to configure and use SSH-keys for security reasons.

Bash

Typically, under UNIX-like environments bash scripts are written for default SSH client (ssh) installed in the
system.

Most often, SSH client is used in the form of executing a specified command, but not a login shell on a remote
system. In simple words, instead of opening an interactive session, ssh executes a command on the remote
system, forwards its output to the local computer and finally exits. This mode allows to use ssh in shell
command substitutions and/or in conveyors for piping its standard output to any external program for further
filtering, parsing and data processing.

The first line of Example 1 shows how to use ssh to execute a command (lssystemstats) on the remote IBM
Spectrum Virtualize system (itso_storage) with privileges of itso_user and store its output in a local shell

mailto:mikhail.zakharov@cz.ibm.com

variable (lsstats) by using shell command substitution mechanism.

The second line of the example demonstrates further data processing: printf command pipes contents of the
sys_data variable through the grep filter to print out only vdisk related lines:

lsstats=$(ssh itso_user@itso_storage lssystemstats)
printf "$lsstats" | grep vdisk

Example 1 Using ssh to extract data from the storage system and save it in a variable

If there is no need to store data for the further processing, the previous code can be simplified using pipes only:

ssh itso_user@itso_storage lssystemstats | grep vdisk

Example 2 Extracting data from the storage system to process it with a conveyor of commands

For simple cases on Windows, plink.exe – SSH command line client from PuTTY family utilities combined with
findstr command can be used to achieve similar results:

C:\Program Files\PuTTY>plink itso_user@itso_storage lssystemstats | findstr vdisk

Example 3 plink usage

Note, another good reason to use SSH-key based authentication in scripts is automatic key submission. SSH
client will take care of it during authentication process on the remote system. Otherwise, with password based
methods, a user will have to enter passwords manually on every ssh connection. Though, if key-based
authentication is not available in a particular environment, it is still possible to modify the bash script to wrap
ssh command by a special utility that supplies user password automatically, this method can be potentially
insecure and it is out of the scope of this chapter.

In general, the method of execution commands remotely via ssh opens a green way to write advanced scripts for
fetching data from IBM Spectrum Virtualize systems and processing it on a local computer with tools and
utilities available to a user in a particular environment.

Example 4 shows a short script which endlessly (with an interval of 1 second) collects current system-level
performance statistic and saves the acquired data into a nice CSV-formatted file:

#!/bin/bash

user="itso_user"
target="itso_storage"
fs=","
cmd="lssystemstats -nohdr -delim "${fs}
header="Date"${fs}"Name"${fs}"Current value"
outfile="sysstats.csv"
frequency=1

printf '%s\n' "$header" > $outfile
while true; do

ssh ${user}@${target} ${cmd} |
gawk -F${fs} 'BEGIN {OFS=FS} {print strftime("%F %T"), $1, $2}' >> $outfile

sleep $frequency

done

Example 4 Collecting system-level performance statistic in a file

In the first part of the script various variables are defined to be used lately:

• user='itso_user' – specifies a username on a storage system
• target='itso_storage' – the IBM Spectrum Virtualize storage system itself
• fs=',' – is a variable to hold a field separator, and comma sign is a good choice for formatted textual data
• cmd="lssystemstats -nohdr -delim "${fs} – the command to be executed on the storage system
• header="Name"${fs}"Current value" – custom header to be printed instead of default one
• outfile='sysstats.txt' – the file name for output data
• frequency=1 – a statistic collection interval in seconds

Also note, most of IBM Spectrum Virtualize CLI commands have these handy options:

• -delim to specify a custom field separator
• -nohdr to suppress headers in the output.

The second part of the script is an infinite while loop which collects and processes data. In Example 4, GNU
implementation of awk language (gawk) is used for this purpose as a tool to parse data by columns and add
current timestamp into each row.

The main disadvantage of Example 4 script is that a new SSH connection with the storage system is established
on every loop iteration. It becomes really painful for password-based SSH authentication as the user has to type
a valid password continuously, but even with key-based authentication this is not optimal as it takes additional
time and system resources to reopen connections.

Fortunately, IBM Spectrum Virtualize itself is powerful enough to execute sophisticated scripts directly in the
shell of the storage system (actually this shell is bash, running in restricted mode – rbash).

A slightly improved version of system-level performance collecting script of Example 5 shows the way to
offload ssh loop from a local computer to the shell on the remote IBM Spectrum Virtualize system while post-
processing performance data with gawk stays on the local computer:

#!/bin/bash

user="itso_user"
target="itso_storage"
fs=","
cmd="lssystemstats -nohdr -delim "${fs}
header="Date"${fs}"Name"${fs}"Current value"
outfile="sysstats.csv"
frequency=1

printf '%s\n' "$header" > $outfile
ssh ${user}@${target} "while true; do $cmd; sleep $frequency; done" |

gawk -F${fs} 'BEGIN {OFS=FS} {print strftime("%F %T"), $1, $2}' >> $outfile

Example 5 Moving the performance collection loop to the storage system

The advantage of this method is that there is a single connection only established with IBM Spectrum Virtualize
as the while loop runs in the shell of the remote storage system.

Python

In Python an external module is required to connect with IBM Spectrum Virtualize via SSH protocol.
Nowadays, the most popular one is open-source paramiko and it can be installed using pip.

Example 6 illustrates the simplest template of paramiko usage in a Python script:

import paramiko

target = 'itso_storage'
user = 'itso_user'
command = 'lsvdisk'

client = paramiko.SSHClient()
client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
client.connect(hostname=target, username=user)

stdin, stdout, stderr = client.exec_command(command)
data = stdout.read()
errors = stderr.read()

if data:
 print(data.decode('US-ASCII'))

if errors:
 print(errors.decode('US-ASCII'))

Example 6 Basic paramiko usage

Here, in the first line of the script paramiko module is loaded and three next lines define variables:

• target – a hostname/IP address of IBM Spectrum Virtualize system. In this script it is “itso_storage”.

• user – a username (itso_user) to log into the storage system

• command – a command (lsvdisk) to run on the target.

Further, paramiko.SSHClient() represents a session with SSH server.

The set_missing_host_key_policy(paramiko.AutoAddPolicy()) defines what to do if the remote system
fingerprints are not known locally. Actually there are two policies: AutoAddPolicy and RejectPolicy. We chose
first one to simplify the example and to connect with the remote storage system anyway, but for security reasons
in production and in advanced scripts, load_system_host_keys() can be used to load system host keys.

Next, connect(hostname=target, username=user) connects with the storage system. If keys-based
authentication is configured properly, keys are checked automatically and a session with SSH server is
established. There are several options available with client.connect(). For example, it's possible to specify

certificates using pkey or key_filename arguments as well as to set user password with password argument, if
it is not possible to engage better authentication methods.

Therefore, in the worst, insecure and strongly not advised way, the code, as it is shown in Example 7, may even
contain passwords in plain text:

client.connect(hostname='itso_storage', username='itso_user', password='MySecReT1')

Example 7 Dangerous, not recommended client.connect() method invocation

To run a command on the remote system exec_command() method is used. It returns data from stdin, stdout
and stderr streams of the executed command.

In the last lines of the script the data is read from both stdout and stderr streams and decoded into convenient
US-ASCII character set to be printed by print().

SMI-S

IBM Spectrum Virtualize supports the Storage Management Initiative Specification (SMI-S). It is an ISO
approved storage standard which provides access to common management functions and features of various
storage systems. It is developed and maintained by the Storage Networking Industry Association (SNIA).

SMI-S is based on three main components: the Common Information Model (CIM), Web-Based Enterprise
Management standards (WBEM) and Service Location Protocol (SLP).

There is a number of applications and tools which can be used to query SMI-S, but this chapter shows a simple
way to reach CIM/WBEM services of the IBM SAN Volume Controller system using Python and open-source
PyWBEM module, which can be installed via pip.

Example 8 demonstrates the very basics of pywbem module usage with IBM SVC system:

import pywbem
import getpass

target = 'itso_storage'
url = 'https://' + target
username = 'itso_user'
password = getpass.getpass()

wbemc = pywbem.WBEMConnection(url, (username, password), 'root/ibm',
no_verification=True)

cluster = wbemc.EnumerateInstances('IBMTSSVC_Cluster')
print(cluster[0].items())

Example 8 Basic pywbem usage

In Example 8, WBEMConnection() establishes HTTPS connection with WBEM services of IBM SAN Volume
Controller. Here, target storage system URL is specified by the url argument. Username and password as well
as the CIM namespace (root/ibm) to query are also provided in the next lines.

Note, getpass module is not necessary to work with SMI-S, it's purpose is to securely read passwords from
standard input with terminal echo function switched off to hide what is typed in.

Next, no_verification=True argument disables SSL certificate verification in this code. In other words it forces
the script to trust any certificate provided by the WBEM server.

Warning, disabling the verification of the server SSL certificate is dangerous. It is insecure and should be
avoided in production.

After connection is successfully established, instances of a given CIM class can be enumerated with
EnumerateInstances() method, which returns a complex data structure – a list of CIMInstance() classes. In
Example 8, it is done over IBMTSSVC_Cluster class which represents system level information comparable
with the results of lssystem command execution.

There are different CIM classes available for comprehensive management of SAN Volume Controller system,
such as:

• IBMTSSVC_Cluster – System level information
• IBMTSSVC_Node – Information about nodes
• BMTSSVC_ConcreteStoragePool – Mdisk groups
• IBMTSSVC_BackendVolume – Mdisks themselves
• IBMTSSVC_StorageVolume – Vdisk information
• etc.

This document touches small amount of them to illustrate SMI-S capabilities, but it does not provide full list of
these classes or their descriptions. See documentation on IBM SAN Volume Controller WBEM/CIM classes,
their purposes and relationship diagrams on this website:
https://www.ibm.com/support/knowledgecenter/STPVGU/com.ibm.storage.svc.console.720.doc/
svc_sdkintro_215ebp.html

The last line of the script parses and prints out the data. But it is not the only way to do the job, Python is a
flexible language, it allows to do such work in different ways. Several approaches of processing the data
acquired by EnumerateInstances() for a number of CIM classes are listed in Example 9:

print('Cluster information')
cluster = wbemc.EnumerateInstances('IBMTSSVC_Cluster')
print(cluster[0]['ElementName'])
for c_prop in cluster[0]:
 print('\t{prop}: "{val}"'.format(prop=c_prop, val=cluster[0].properties[c_prop].value))

print('Nodes information')
nodes = wbemc.EnumerateInstances('IBMTSSVC_Node')
for node in nodes:
 print(node['ElementName'])
 for n_prop in node:
 print('\t{prop}: "{val}"'.format(prop=n_prop, val=node[n_prop]))

https://www.ibm.com/support/knowledgecenter/STPVGU/com.ibm.storage.svc.console.720.doc/svc_sdkintro_215ebp.html
https://www.ibm.com/support/knowledgecenter/STPVGU/com.ibm.storage.svc.console.720.doc/svc_sdkintro_215ebp.html

print('Pools information')
pools = wbemc.EnumerateInstances('IBMTSSVC_ConcreteStoragePool')
print('PoolID', 'NumberOfBackendVolumes', 'ExtentSize', 'UsedCapacity',
 'RealCapacity', 'VirtualCapacity', 'TotalManagedSpace', sep=',')
for pool in pools:
 print(
 pool['ElementName'], pool['NumberOfBackendVolumes'], pool['ExtentSize'],
 pool['UsedCapacity'], pool['RealCapacity'], pool['VirtualCapacity'],
 pool['TotalManagedSpace'], sep=','
)

Example 9 Parsing EnumerateInstances() output for various classes representing Cluster, Nodes and Storage
pools

Using similar, yet different approaches “Cluster information” and “Nodes information” sections of the example
parse data in key/value pairs to show all acquired data. On the other hand, “Pools information” part filters data
to print selected fields only. It wastefully ignores all other fields.

For some classes, like IBMTSSVC_StorageVolume, full enumeration of all the instances may be quite slow, it
can generate tens megabytes of unnecessary data which must be prepared by the storage system, passed over the
network and finally parsed by the script. Fortunately, it is possible to significantly reduce such data-flows by
requesting limited amount of necessary information only.

There is ExecQuery() method which allows to request the WBEM server in a convenient query language,
similar to SQL. Two dialects: CIM Query Language (DMTF:CQL) and WBEM Query Language (WQL) are
recognized by PyWBEM, both of them can be used with IBM SAN Volume Controller, but this chapter uses
CQL syntax in examples. DMTF specification (DSP0202) for CQL can be found on this website:
http s ://www.dmtf.org/sites/default/files/standards/documents/DSP0202_1.0.0.pdf

Example 10, illustrates flexibility of the ExecQuery() method:

print('Vdisks:')
vdisks = wbemc.ExecQuery(
 'DMTF:CQL',
 "SELECT VolumeId, VolumeName, NumberOfBlocks FROM IBMTSSVC_StorageVolume"
 " WHERE VolumeName LIKE 'vdisk.'"
)
for vd in vdisks:
 print(vd['VolumeId'], vd['VolumeName'], vd['NumberOfBlocks'], sep=',')

Example 10 Querying required only data with ExecQuery() method

One of the advantages of SMI-S on IBM SVC is it's capability to collect performance data of various storage
system components using “Statistic” family CIM classes. For example:

• IBMTSSVC_BackendVolumeStatistics
• IBMTSSVC_FCPortStatistics
• IBMTSSVC_NodeStatistics
• IBMTSSVC_StorageVolumeStatistics

https://www.dmtf.org/sites/default/files/standards/documents/DSP0202_1.0.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0202_1.0.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0202_1.0.0.pdf

• etc.
A quite detailed, with commentaries, example of performance data collecting and processing script is shown in
Example 11. It works with IBMTSSVC_StorageVolumeStatistics to retrieve vdisks statistics:

import pywbem
import getpass
import time

target = 'itso_storage'
user = 'itso_user'
password = getpass.getpass()

url = 'https://' + target
ofs = ',' # Output field separator
header = ['InstanceID', 'ReadIOs', 'WriteIOs', 'TotalIOs',

 'KBytesRead', 'KBytesWritten', 'KBytesTransferred']
frequency = 5 # Performance collection interval in minutes

def vdisks_perf(wbem_connection, hdr):
 """Get performance statistics for vdisks"""

 # Form "select" request string
 request = "SELECT " + ','.join(hdr) + " FROM IBMTSSVC_StorageVolumeStatistics"
 result = []

 # Request WBEM
 vd_stats = wbem_connection.ExecQuery('DMTF:CQL', request)
 # parse reply and form a table
 for vds in vd_stats:
 # Handle 'InstanceID' in a specific way
 vde = [int(vds.properties[hdr[0]].value.split()[1])]

 # Collect the rest of numeric performance fields
 for fld in header[1:]:
 vde.append(int(vds.properties[fld].value))
 result.append(vde)

 return result

def count_perf(new, old, interval):
"""Calculate performance delta divided by interval to get per second values"""

 result = []
 for r in range(0, len(new)):
 row = [new[r][0]] # InstanceID
 for c in range(1, len(new[0])):
 row.append(round(float(new[r][c] - old[r][c]) / interval, 2))

 result.append(row)
 return result

def print_perf(stats, hdr):
 """Printout performance data matrix"""

 # Print header
 print(ofs.join(str(fld) for fld in hdr))

 # Print performance table
 for ln in stats:
 print('{}{}{}'.format(ln[0], ofs, ofs.join(str(fld) for fld in ln[1:])))

Connect with WBEM/CIM services
wbemc = pywbem.WBEMConnection(url, (user, password), 'root/ibm', no_verification=True)

Infinite performance processing loop
new_perf = vdisks_perf(wbemc, header)
while True:
 old_perf = new_perf
 new_perf = vdisks_perf(wbemc, header)
 delta_perf = count_perf(new_perf, old_perf, frequency * 60)

 print_perf(delta_perf, header)
 time.sleep(frequency * 60)

Example 11 Accessing performance metrics with PyWBEM module

Note, statistic collection must be already configured and running on the storage system. To check it, execute:

lssystem | grep statistics

To set appropriate statistic generation interval, run:

startstats -interval N

Where N is interval in minutes. For Example 11 to work properly, interval must be 5 minutes or less.

SMI-S services can be used not only to report, but to configure storage systems. Algorithms of such operations
on the storage system can be accessed by the following links:

https://www.ibm.com/support/knowledgecenter/STPVGU/com.ibm.storage.svc.console.720.doc/
svc_storagecfgintro_215fca.html

https://www.ibm.com/support/knowledgecenter/STPVGU/com.ibm.storage.svc.console.720.doc/
svc_copyservicesintro_215fcb.html

HTTPS and RESTful API on IBM Spectrum Control

Different approach to access storage resources is to use Hypertext Transfer Protocol Secure (HTTPS) protocol
and Representational State Transfer (REST or RESTful) API of IBM Spectrum Control server. The main

https://www.ibm.com/support/knowledgecenter/STPVGU/com.ibm.storage.svc.console.720.doc/svc_copyservicesintro_215fcb.html
https://www.ibm.com/support/knowledgecenter/STPVGU/com.ibm.storage.svc.console.720.doc/svc_copyservicesintro_215fcb.html
https://www.ibm.com/support/knowledgecenter/STPVGU/com.ibm.storage.svc.console.720.doc/svc_storagecfgintro_215fca.html
https://www.ibm.com/support/knowledgecenter/STPVGU/com.ibm.storage.svc.console.720.doc/svc_storagecfgintro_215fca.html

advantage of this method is that it allows to get information about the whole SAN/Storage infrastructure
managed by the IBM Spectrum Control server.

IBM Spectrum Control REST API documentation is available by the link:

https://www.ibm.com/support/knowledgecenter/SS5R93_5.2.15/com.ibm.spectrum.sc.doc/ref_rest_api.html

The basic idea of it is to send an HTTP GET request for a specific URL to retrieve structured information about
the storage resource.

For example, requesting h ttps:// s pectrumcontrolhost:9569/srm/REST/api/v1/ in the browser will show the root
of the whole REST tree: access points for all sections of all possible resources registered in the Spectrum
Control server:

Figure 1 Accessing Spectrum Control RESTful API using HTTP GET request

Table 1 lists the wide range of sections, some of which are nested:
Accessers
AccessPools
Accounts
Applications
Blades
ClusterNodes
Clusters
Containers
Departments
Disks
Fabric
FilerStorage
GeneralGroups
HostConnections
HypervisorClusters

NASFileSystems
NASNodes
NASNSDs
NASPools
NASSnapshots
Nodes
ObjectStorage
Performance
Pools
RAIDArrays
Relationships
RemoteReplication
Servers
Sites
Slicestors

https://spectrumcontrolhostname:9569/srm/REST/api/v1/
https://spectrumcontrolhostname:9569/srm/REST/api/v1/
https://spectrumcontrolhostname:9569/srm/REST/api/v1/
https://spectrumcontrolhostname:9569/srm/REST/api/v1/
https://www.ibm.com/support/knowledgecenter/SS5R93_5.2.15/com.ibm.spectrum.sc.doc/ref_rest_api.html

Hypervisors
InterSwitchConnections
IOGroups
ManagedDisks
Mirrors
Modules
NASFileSets

StoragePools
StorageSystems
Switches
SwitchPorts
Vaults
Volumes
ZoneSets

Table 1 Branches and leaves of the Spectrum Control RESTful API tree

It is possible to access any of these sections manually with a browser, command-line curl or wget web-
retrieving utilities. Example of using wget is shown on the web-site:

https://www.ibm.com/support/knowledgecenter/SS5R93_5.2.15/com.ibm.spectrum.sc.doc/
mgr_rest_api_retrieving_cli.html

It is also easy to automate the same operations using Python as the output is produced in the well-known
JavaScript Object Notation (JSON) format.

Example 12 demonstrates the code to fetch information about storage systems. To simplify the work with
HTTPS, open-source module requests is used to perform the task:

import requests
import getpass

username = 'scuser'
password = getpass.getpass()

url = 'https://spectrumcontrolhost:9569/srm/'

sess = requests.Session()
sess.verify = False

resp = sess.post(url + 'j_security_check',
 data={'j_username': username, 'j_password': password})

resp.raise_for_status()

resp = sess.get(url + 'REST/api/v1/' + 'StorageSystems')
resp.raise_for_status()

print(resp.json())

Example 12 Accessing Spectrum Control RESTful API using Python and requests module

To request password interactively and to hide user's typing “getpass” module is engaged.

To log a user in Spectrum Control authentication procedure requires retrieving a security token from the server
and storing it to use during the session. Therefore, to preserve cookies (including the security token) and reuse
the same TCP connection with the server (for performance benefits) requests.Session() is initialized in the
script: sess = requests.Session(). As in the examples for WBEM/CIM (see Example 8 and Example 11) and

https://www.ibm.com/support/knowledgecenter/SS5R93_5.2.15/com.ibm.spectrum.sc.doc/mgr_rest_api_retrieving_cli.html
https://www.ibm.com/support/knowledgecenter/SS5R93_5.2.15/com.ibm.spectrum.sc.doc/mgr_rest_api_retrieving_cli.html

because of the same reasons, SSL certificate verification here is also disabled: sess.verify = False.

Actual requests are sent by sess.post() and sess.get() within the same session. In the first case, HTTP POST is
used to submit username and password via login form at:

https://spectrumcontrolhost:9569/srm/j_security_check

The second one is an ordinary HTTP GET to request RESTful API for storage systems information:
https://spectrumcontrolhost:9569/srm/REST/api/v1/StorageSystems

In the script raise_for_status() is executed on every response. It raises an exception if the server returns 4xx or
5xx error status code but passes transparently if request was successful.

The last line of the code in Example 12, decodes JSON data of the response into convenient Python structure of
nested lists and dictionaries. On this step any appropriate actions can be applied to parse, filter and process
acquired data, but for the sake of simplicity, the script just prints this structure to standard output.

HTTPS on IBM Spectrum Virtualize

Though it is less documented, it is possible to interact with Hypertext Transfer Protocol Secure (HTTPS) server
of IBM Spectrum Virtualize directly the very same way typical browsers do. And as it was shown in the
previous examples for Spectrum Control, Python with open-source module requests can greatly simplify the
task.

Example 13 contains basic code of establishing HTTPS connection with IBM Spectrum Virtualize system to
request and process information about virtual disks:

import getpass
import requests
import time

target = 'itso_storage'
user = 'itso_user'
password = getpass.getpass()

target_url = 'https://' + target + '{}'

sess = requests.Session()
sess.verify = False

print('Accessing the system')
resp = sess.get(target_url.format('/'))
resp.raise_for_status()

time.sleep(1)
print('Trying to login')
resp = sess.post(target_url.format('/login'),

 data={'login': user, 'password': password})
resp.raise_for_status()

https://spectrumcontrolhost:9569/srm/REST/api/v1/StorageSystems
https://spectrumcontrolhost:9569/srm/j_security_check

print('Requesting data')
resp = sess.post(target_url.format('/VdiskGridDataHandler'),

 data={'sort': 'vdiskUid'})
resp.raise_for_status()

vdisks = resp.json()
for vdisk in vdisks['items']:
 print(vdisk['name'], vdisk['capacity'], vdisk['vdiskUid'],
 vdisk['mdiskGrpName'], vdisk['status'])

Example 13 Using HTTPS to query IBM Spectrum Virtualize systems

Besides requests, two other modules are imported in this code: getpass is needed to hide user password, and
time is used to make a short pause between requests.

A session with disabled SSL certificate verification is established like it was shown and described in Example
12.

Before requesting the server for storage related information, like vdisks data in this example, two steps must be
completed in advance:

1. A valid session cookies must be acquired from the server. In Example 13 it is performed with simple
GET request to the root of the server: sess.get(target_url.format('/')). Note, a small pause time.sleep(1)
after this step may be required for the server to set up an environment for the new session.

2. A user must be authenticated by the storage system. It is done by filling in login form with POST
request: sess.post(target_url.format('/login'), data={'login': user, 'password': password})

Only after successful accomplishing both of these stages a request to query an actual storage related information
can be done.

As it was done earlier in Example 12, resp.raise_for_status() is called to catch HTTP errors if they occur.

The code above accesses /VdiskGridDataHandler recourse, but actually any valid page available via WEBUI
can be requested from the server, for example: /FlashCopyTreeDataHandler, /HostGridDataHandler, etc.
Another interesting URL is /RPCAdapter which can be used to obtain performance statistics from the storage
system.

The HTTP POST method to query such resources is needed to submit additional parameters in JSON format or
various form options, such as sorting order {'sort': 'vdiskUid'} shown in Example 13.

As the server also responds in JSON it is useful to process it with built-it requests module JSON parser: vdisks
= resp.json().

To keep the example simple, the last lines of the script define just a for-loop to go over the acquired vdisks
information and print some of the valuable items.

In more recent versions like 7.8.1.6 and above, two new variables kzgjfybjm and kzgjfycsm have been added.
They are used to control the session on a "handshake" manner: the server sets kzgjfybjm cookie and the client

must add it's value into kzgjfycsm variable in the request URL. Note, kzgjfybjm and kzgjfycsm values change
from time to time, so it's good to add fresh values after getting every response from the server. So the script
above can be changed:

import requests
import time

target = 'IBM_SVC_Storage_system'
user = 'My_user_name'
password = 'My_secret_password'
target_url = 'https://' + target + '{}'

sess = requests.Session()
sess.verify = False

print('Accessing the system')
resp = sess.get(target_url.format('/'))
resp.raise_for_status()

time.sleep(1)
print('Trying to login')
resp = sess.post(target_url.format('/login'), data={'login': user, 'password': password})
resp.raise_for_status()

handshake = 'kzgjfycsm' + '=' + resp.cookies['kzgjfybjm']

print('Getting data')
resp = sess.post(target_url.format('/VDiskGridDataHandler?' + handshake),

 data={'count': '40', 'extendedMDiskInfo': 'false', 'refresh': 'true', 'start': '0'})
resp.raise_for_status()

Print out information:
print(resp.json())

Note! Before sending a new request, refresh 'handshake' again:
handshake = 'kzgjfycsm' + '=' + resp.cookies['kzgjfybjm']

Example 14 Using HTTPS to query IBM Spectrum Virtualize systems – updated

Conclusions

This chapter briefly showed several unified methods of accessing IBM SVC/Storwize systems with scripts.
Modern and open protocols, APIs and standards allow to write versatile code for storage management, reporting
and configuration tasks using programming languages convenient for different environments and operating
systems.

SNMP protocol on IBM Spectrum Virtualize is primary used for system monitoring tasks. It is not touched by
the scripting topic because SNMP-agents are configured to work in send traps only mode and it is not possible to
access them with SNMP GetRequest/SetRequest/etc requests.

	IBM Spectrum Virtualize scripting
	Revision history
	Preface
	Secure Shell (SSH)
	Bash
	Python

	SMI-S
	HTTPS and RESTful API on IBM Spectrum Control
	HTTPS on IBM Spectrum Virtualize
	Conclusions

